An Analytical Consistent Pseudo-Component Delumping Procedure for Equations of State with Non-Zero Binary Interaction Parameters
نویسندگان
چکیده
For mixtures with many components, some or most of the components are grouped into pseudo-components in order to reduce the dimensionality of the problem for phase equilibrium calculations, and therefore the computational effort. However, knowing the detailed fluid phase split may be important for a variety of applications. The detailed phase compositions resulting from a flash calculation performed on a lumped mixture can be predicted using a delumping (inverse lumping) procedure (Leibovici, Stenby, and Knudsen, 1997). If the mixture parameters of an equation of state (EoS) can be expressed as a linear combination of pure component parameters and the phase mole fractions, then the component fugacity coefficients can also be expressed as a linear combination of pure component parameters with coefficients only depending on mixture properties. As a result, the equilibrium coefficients are related only to component properties and EoS coefficients, independently on phase compositions. In this work, we show using a reduction method how to effectively obtain such an expression of the equilibrium constants even for non-zero binary interaction parameters (BIP) in the EoS, and based on these results, we propose a totally consistent analytical procedure for the estimation of equilibrium constants of detailed mixtures from lumped information, which is an extension of Leibovici’s delumping method. For several examples with non-zero BIP between hydrocarbon components and classical contaminants, phase mole fractions and the vapour mole fraction of the delumped mixture are in excellent agreement with the exact values obtained by flashing the original mixture. The delumping procedure has multiple applications, mainly for reservoir simulation and distillation problems.
منابع مشابه
Solubility of Methane, Ethane, and Propane in Pure Water Using New Binary Interaction Parameters
Solubility of hydrocarbons in water is important due to ecological concerns and new restrictions on the existence of organic pollutants in water streams. Also, the creation of a thermodynamic model has required an advanced study of the phase equilibrium between water (as a basis for the widest spread muds and amines) and gas hydrocarbon phases in wide temperature and pressure ranges. Therefore,...
متن کاملApplication of the Genetic Algorithm to Calculate the Interaction Parameters for Multiphase and Multicomponent Systems
A method based on the Genetic Algorithm (GA) was developed to study the phase behavior of multicomponent and multiphase systems. Upon application of the GA to the thermodynamic models which are commonly used to study the VLE, VLLE and LLE phase equilibria, the physically meaningful values for the Binary Interaction Parameters (BIP) of the models were obtained. Using the method proposed in t...
متن کاملVLE Predictions of Strongly Non-Ideal Binary Mixtures by Modifying Van Der Waals and Orbey-Sandler Mixing Rules
By proposing a predictive method with no adjustable parameter and by using infinite dilution activity coefficients of components in binary mixtures obtained from UNIFAC model, the binary interaction parameters (k12) in van der Waals mixing rule (vdWMR) and Orbey-Sandler mixing rule (OSMR) have been evaluated. The predicted binary interaction parameters are used in Peng-Robinson-S...
متن کاملNonlinear Vibration Analysis of the Fluid-Filled Single Walled Carbon Nanotube with the Shell Model Based on the Nonlocal Elacticity Theory
Nonlinear vibration of a fluid-filled single walled carbon nanotube (SWCNT) with simply supported ends is investigated in this paper based on Von-Karman’s geometric nonlinearity and the simplified Donnell’s shell theory. The effects of the small scales are considered by using the nonlocal theory and the Galerkin's procedure is used to discretize partial differential equations of the governing i...
متن کاملDetermination of Minimum Miscibility Pressure by Analytical Method
The analytical theory of one dimensional, dispersion free miscible displacement of oil by injection gas with nc component has shown that: the MMP is the lowest pressure at which any one of the initial oil, injection gas or crossover key tie lines becomes critical, which means that its length approaches to zero. In this paper, we propose a method for a solving multi component syst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005